7,8-Dihydro Analogs of Ecdysteroids*

V. N. Odinokov ${ }^{a}$, S. R. Afon'kina ${ }^{a}$, R. V. Shafikov ${ }^{a}$, R. G. Savchenko ${ }^{a}$, I. V. Galyautdinov ${ }^{a}$, L. M. Khalilov ${ }^{a}$, and A. S. Shashkov ${ }^{b}$
${ }^{a}$ Institute of Petroleum Chemistry and Catalysis, Russian Academy of Sciences, pr. Oktyabrya 141, Ufa, 450075 Bashkortostan, Russia
e-mail: ink@anrb.ru
${ }^{b}$ Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia

Received August 2, 2006

Abstract

Reactions of 20-hydroxyecdysone, its diacetonide, and 24,25(25,26)-anhydro derivative with lithium tetrahydridoaluminate gave the corresponding 6α - and 6β-epimeric alcohols and 7,8 -dihydro analogs.

DOI: 10.1134/S107042800706005X

Selective reduction of the double Δ^{7}-bonds in ecdysteroids with formation of 7,8 -dihydro analogs opens a way to new biologically active structures. Catalytic hydrogenation of ecdysteroids does not produce the desired products because of numerous side reactions [2-4]. Suksamrarn et al. [5] recently reported on stereoselective catalytic hydrogenation of Δ^{7}-6-oxo steroids in the presence of sodium nitrite; however, we failed to obtain 7,8-dihydro analogs from 20-hydroxyecdysone and its derivatives according to the procedure described in [5]. Our attempts to hydrogenate the Δ^{7}-bond in 20 -hydroxyecdysone and its derivatives via reaction with alkali metals in liquid ammonia [6, 7] (which is used for selective reduction of double bond in conjugated ketones of the steroid series) were also unsuccessful.

While studying the reactions of 20-hydroxyecdysone (I), its 2,3:20,22-diacetonide II and 24,25-(25,26)-anhydro-20-hydroxyecdysone diacetonide III (a 3:2 mixture of Δ^{24} and Δ^{25} derivatives) with lithium tetrahydridoaluminate we revealed formation of the corresponding 7,8-dihydro analogs IV-VI (Scheme 1). In the reaction of compound \mathbf{I} with LiAlH_{4} at a molar ratio of 1:7 (a suspension in diethyl ether) we isolated 21% of 7,8 -dihydro analog IV which was identical in the IR and NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) spectra to a sample described previously [5]. The reactions of diacetonides II and III with 3 equiv of LiAlH_{4} gave the corresponding 7,8-dihydro analogs \mathbf{V} and $\mathbf{V I}$ in 35 and 30% yield, respectively. In addition, we isolated mixtures ($\sim 1: 2$)

[^0]of previously described [8] 6 $6 / 6 \beta$-epimeric alcohols VII and VIII, whose yields were 60 and 65%, respectively. When the reaction with diacetonide II was carried out by adding LiAlH_{4} to a solution of II (i.e., the order of mixing the reactants was changed), $\sim 10 \%$ of compound IX was formed together with \mathbf{V} and VII. The reaction with 5 equiv of LiAlH_{4} gave rise to a mixture of compounds \mathbf{V}, VII, and \mathbf{X} (Scheme 2).

It could be presumed that 7,14-diene IX is formed via dehydration of alcohol VII and that $\Delta^{14(15)}$-alcohol \mathbf{X} is the product of reduction and dehydration of 7,8-dihydro derivative V. However, compounds IX and \mathbf{X} were not obtained in the reactions of alcohols VII and \mathbf{V} with LiAlH_{4}. In these cases, alcohol VII was recovered from the reaction mixture, while the reaction of ketone \mathbf{V} with LiAlH_{4} afforded the corresponding alcohol XI which failed to react with LiAlH_{4}. Therefore, we concluded that compounds IX and \mathbf{X} were formed from a common precursor.

The ${ }^{13} \mathrm{C}$ NMR spectra of saturated ketones IV-VI displayed characteristic differences from the spectra of initial conjugated enones I-III. The C^{7} and C^{8} signals appeared in a considerably stronger field, while the C^{6} signal was displaced downfield ($\Delta \delta_{\mathrm{C}} \sim 9 \mathrm{ppm}$) due to the lack of conjugation between the carbonyl group and double bond. Signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ketone \mathbf{V} and alcohol XI were assigned using homo- and heteronuclear correlation techniques (COSY, HSQC, HMBC, TOCSY, ROESY). ROESY experiments showed nuclear Overhauser effect between protons of the β-oriented $\mathrm{C}^{19} \mathrm{H}_{3}$ group and $5-\mathrm{H}$

Scheme 1.

I, IV, $R^{1}=R^{2}=R^{3}=R^{4}=\mathbf{H}$; II, IIII, V-VIII, $R^{1} R^{2}=R^{3} R^{4}=M e_{2} C$.
I, II, IV, V, VII, $\mathrm{R}^{5}=\overbrace{{ }_{27} \overbrace{\mathrm{Me}}^{24} \mathrm{C}_{\mathrm{OH}}^{26}}^{26}$; III, VI, VIII, $\mathrm{R}^{5}=\overbrace{27}^{24} \overbrace{\mathrm{Me}}^{26} \mathrm{CH}_{2}^{26}$

Scheme 2.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 43 No. 62007

Scheme 3.

XIII, $\mathrm{R}^{1} \mathrm{R}^{2}=\mathrm{Me}_{2} \mathrm{C} ; \mathbf{X I V}, \mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{H}$.
Scheme 4.

in molecule \mathbf{V}, indicating cis-junction of the A and B rings, i.e., β-orientation of $5-\mathrm{H}$. The existence of NOE between $8-\mathrm{H}$ and $\alpha-14-\mathrm{OH}$ (ROESY) confirmed α-orientation of the former (see figure).

These data show that hydride reduction of the Δ^{7} bond in diacetonide II is not accompanied by epimerization at C^{5} and that the attack by hydride ion on the double-bonded C^{8} atom occurs at the α-side. Unlike α, β-unsaturated ketone II [8], no epimerization at C^{5} was observed in the hydride reduction of the ketone group in unsaturated ketone \mathbf{V}. The reduction of ketone \mathbf{V} with lithium tetrahydridoaluminate is stereospecific, and the product is 6α-alcohol XI (Scheme 3),
while the reduction of the 6-oxo group in compound II under the same conditions gives a 1:2 mixture of $6 \alpha-$ and 6β-epimeric alcohols VII [8].

The structure of alcohol XI (see figure) was determined on the basis of NOE cross peaks observed in the ROESY spectra. β-Orientation of the 5 -H proton follows from the existence of a correlation between that proton and protons of the $\mathrm{C}^{19} \mathrm{H}_{3}$ group (HMBC). Couplings between the $14-\mathrm{OH}$ proton, on the one hand, and $8-\mathrm{H}$ and $9-\mathrm{H}$, on the other, suggests α-configuration of the newly formed chiral center at C^{8}, and a strong cross peak between $5-\mathrm{H}$ and $6-\mathrm{H}$ unambiguously indicates β-orientation of the latter and hence

V

XI

Cross couplings (NOEs) in the ROESY experiments for compounds \mathbf{V} and $\mathbf{X I}$.
formation of 6α-epimeric alcohol XI. An additional support to the α-orientation of the $6-\mathrm{OH}$ group is provided by the presence of a cross peak between the $6-\mathrm{OH}$ proton and $8-\mathrm{H}$. Interaction between the $6 \alpha-\mathrm{OH}$ proton and $3-\mathrm{H}$ was also observed; this means that the latter occupies axial position; correspondingly, the 2-H proton is oriented equatorially.

As follows from our data on the stereochemistry of hydride reduction, the known C^{5}-epimerization of ecdysteroids under alkaline conditions [9,10] accompanies the reduction of the 6 -oxo group in Δ^{7} - 6 -oxo ecdysteroids; as a result, 6-hydroxy derivatives of the 5α-series are formed [8]. The hydride reduction of the Δ^{7}-bond in Δ^{7}-6-oxo ecdysteroids I-III gives rise to 7,8 -dihydro derivatives IV-VI of the 5β-series. Likewise, no epimerization at C^{5} is observed in the hydrogenation of the oxo group in saturated ketone \mathbf{V}. We can conclude that 5β-epimers of 7,8 -dihydro- 6 -oxo and 7,8-dihydro-6-hydroxy ecdysteroid derivatives with cis-junction of the A and B rings are more stable.

The structure of 7,14-dien-6 β-ol IX is confirmed by comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra with those of the corresponding 6α-epimer [8]. Signals from C^{5} and C^{6} in the ${ }^{13} \mathrm{C}$ NMR spectrum of the former appear in a weaker field $\left(\Delta \delta_{\mathrm{C}}=1.8\right.$ and 4.1 ppm , respectively, while the C^{7} signal is displaced upfield ($\Delta \delta_{\mathrm{C}}=1.0 \mathrm{ppm}$; the C^{7} and C^{15} signals were misassigned in [8]). The $6-\mathrm{H}$ signal in the ${ }^{1} \mathrm{H}$ NMR spectrum of 6β-dienol $\mathbf{I X}$ is located in a stronger field ($\Delta \delta=0.76 \mathrm{ppm}$) relative to the corresponding signal of the 6α-epimer (cf. the data for 6α - and 6β-epimeric alcohols VII [8]).

The presence of double $\mathrm{C}^{14}=\mathrm{C}^{15}$ bond in alcohol \mathbf{X} induces appreciable changes in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral patterns as compared to saturated alcohol XI. The ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{X} contains a signal at $\delta 5.35 \mathrm{ppm}$ from the vinyl proton on C^{15}, and the C^{14} and $\mathrm{C}^{15} s p^{2}$-hybridized carbon atoms give rise to downfield signals at $\delta_{\mathrm{C}} 154.4$ and 120.6 ppm , respectively, in the ${ }^{13} \mathrm{C}$ NMR spectrum. The $\mathrm{C}^{8}, \mathrm{C}^{12}, \mathrm{C}^{16}$, and C^{17} signals are displaced downfield $\left(\Delta \delta_{\mathrm{C}}=11.5,7.4\right.$, 7.0 , and 9.7 ppm , respectively), while the C^{9} signal is located in a stronger field $\left(\Delta \delta_{\mathrm{C}}=11.3 \mathrm{ppm}\right)$. As follows from the Dreiding model, the $\mathrm{C}^{8}, \mathrm{C}^{16}$, and C^{17} atoms in molecule \mathbf{X} lie in the $\mathrm{C}^{14}=\mathrm{C}^{15}$ bond plane and are therefore deshielded, while the C^{9} atom falls into the shielded area (out of the double bond plane) [11].

Hydrolysis of diacetonide \mathbf{V} in 70% acetic acid or $\mathrm{AcOH} / \mathrm{ZnCl}_{2}$ [12] resulted in deprotection of only hydroxy groups on C^{2} and C^{3}; the reaction in the presence of ZnCl_{2} was accompanied by dehydration to generate $\Delta^{14(15)}$-bond. As a result, 20,22-acetonides XII and XIII were obtained, respectively. Deprotection of all four hydroxy groups was achieved using perchloric acid in methanol [13]. In this case, the reaction was also accompanied by dehydration, and the product was enone XIV (Scheme 3).

The formation of $\Delta^{14(15)}$ bond also occurred in the catalytic hydrogenation of the side-chain double bond of $\Delta^{24}\left(\Delta^{25}\right)$-alkenes VI. The reaction was accompanied by deprotection of the hydroxy groups on C^{2} and C^{3} to give enone $\mathbf{X V}$ (Scheme 4). An analogous process was
described in [4]. Deprotection of the 2,3-dihydroxy moiety is readily identified by the ${ }^{13} \mathrm{C}$ NMR spectra of compounds XII, XIII, and XV, which contain only one acetal signal at $\delta_{\mathrm{C}} 106.8 \mathrm{ppm}$. Deshielding effect of the $\Delta^{14(15)}$-bond leads to downfield shift of the $8-\mathrm{H}$ and 17-H signals in the ${ }^{1} \mathrm{H}$ NMR spectra of compounds XIII and XV; as a result, these signals appear in the region free from other signals, and they show a clearly defined fine structure. The $8-\mathrm{H}$ signal is a doublet of triplets $\left(J_{8,7 \beta}=14.0, J_{8,9}=4.0 \mathrm{~Hz}\right)$ at $\delta 3.03$ (XIII) and $3.04 \mathrm{ppm}(\mathbf{X V})$, and the $17-\mathrm{H}$ signal is a doublet of doublets ($J=14.5,11.0 \mathrm{~Hz}$) at $\delta 2.48 \mathrm{ppm}$.

EXPERIMENTAL

The IR spectra were recorded on a Specord 75IR spectrometer from samples dispersed in mineral oil. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker AM-300 instrument (300.13 for ${ }^{1} \mathrm{H}$ and 75.46 MHz for ${ }^{13} \mathrm{C}$) using CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$ as solvents. Homo- and heteronuclear COSY, TOCSY, ROESY, HSQC, and HBMC experiments were run on a Bruker DRX-500 spectrometer (500.13 MHz for ${ }^{1} \mathrm{H}$ and 125.76 MHz for ${ }^{13} \mathrm{C}$) using DMSO as solvent; to identify hydroxy groups, samples were subjected to lyophilization. The chemical shifts were measured relative to tetramethylsilane as internal reference. The melting points were determined on a Boetius melting point apparatus. The specific rotations were measured on a Perkin-Elmer 141 polarimeter. Thin-layer chromatography was performed on silica gel (Silufol plates); spots were visualized by treatment with a solution of vanillin in ethanol acidified with sulfuric acid.
(20R,22R)-2 $\beta, 3 \beta, 14 \alpha, 20,22,25-H e x a h y d r o x y-~$ 7,8 α-dihydro- 5β-cholestan-6-one (IV, 7,8 α-dihydro-20-hydroxyecdysone). A suspension of 0.5 g (1.04 mmol) of 20 -hydroxyecdysone I (mp $246^{\circ} \mathrm{C}$; prepared according to the procedure described in [14]) in 20 ml of diethyl ether was added under argon to a suspension of $0.277 \mathrm{~g}(7.29 \mathrm{mmol})$ of LiAlH_{4} in 30 ml of diethyl ether, cooled to $\sim 0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at room temperature, 10 ml of methanol was added, the mixture was stirred for 2 h and cooled to $0^{\circ} \mathrm{C}, 5 \mathrm{ml}$ of water was added, and the mixture was neutralized with 5% hydrochloric acid ($\sim 13 \mathrm{ml}$) to a weakly acidic reaction. The mixture was evaporated under reduced pressure to a volume of $\sim 20 \mathrm{ml}$ and extracted with ethyl acetate $(3 \times 50 \mathrm{ml})$. The extract was evaporated under reduced pressure, and the residue was subjected to chromatography on 15 g of silica gel using chloroform-methanol (10:1) as
eluent. Yield $0.103 \mathrm{~g}(21 \%), R_{\mathrm{f}} 0.52\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$, $5: 1), \mathrm{mp} 138-140^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{17}=+24.5^{\circ}(c=3.47, \mathrm{MeOH})$ (cf. [5]). The IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the product were identical to those given in [5].
(20R,22R)-14 $\alpha, 25$-Dihydroxy-2 $\beta, 3 \beta: 20,22$-bis(iso-propylidenedioxy)-5 $\beta, 8$ a-cholestan-6-one (V, 7,8 α-di-hydro-20-hydroxyecdysone 2,3:20,22-diacetonide). A solution of $0.82 \mathrm{~g}(1.46 \mathrm{mmol})$ of diacetonide II ($\mathrm{mp} 234^{\circ} \mathrm{C}$; prepared as described in [15]) in 25 ml of diethyl ether was added under stirring in an argon atmosphere to a suspension of $0.16 \mathrm{~g}(4.39 \mathrm{mmol})$ of LiAlH_{4} in 25 ml of diethyl ether, cooled to $\sim 0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at room temperature, cooled to $0^{\circ} \mathrm{C}$, and 3 ml of water and $\sim 5 \mathrm{ml}$ of 5% hydrochloric acid (to a weakly acidic reaction) were added. The ether layer was separated, and the aqueous layer was extracted with ethyl acetate $(3 \times 30 \mathrm{ml})$. The extracts were combined with the organic phase and evaporated under reduced pressure, and the residue was subjected to chromatography on 5 g of silica gel using chloroform as eluent to isolate $0.29 \mathrm{~g}(35 \%)$ of compound $\mathbf{V}, R_{\mathrm{f}} 0.63\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1\right)$, and $0.49 \mathrm{~g}(60 \%)$ of previously described [8] alcohols VII \{In the ${ }^{13} \mathrm{C}$ NMR spectrum given in [8], signals from $\mathrm{C}^{24}, \delta_{\mathrm{C}} 39.6$ and 39.2 ppm , respectively, for the $6 \alpha-$ and 6β-epimers of VII were missing \}.

Compound V. mp $275-277^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}=+14.2^{\circ}(c=$ $\left.11.97, \mathrm{CHCl}_{3}\right)$. IR spectrum: $v(\mathrm{C}=\mathrm{O}) 1700 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: in $\mathrm{CDCl}_{3}: 1.07 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{C}^{18} \mathrm{H}_{3}\right), 1.10 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}\right), 1.19 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}_{3}, \mathrm{C}^{27} \mathrm{H}_{3}\right)$, $1.35 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}\right), 1.26 \mathrm{~s}, 1.27 \mathrm{~s}, 1.38 \mathrm{~s}, 1.47 \mathrm{~s}(12 \mathrm{H}$, $\left.\mathrm{Me}_{2} \mathrm{C}\right), 1.54-2.09 \mathrm{~m}\left(17 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.16 \mathrm{~m}(1 \mathrm{H}$, $7 \alpha-\mathrm{H}), 2.29 \mathrm{~m}(1 \mathrm{H}, 17-\mathrm{H}), 2.33$ d.t $\left(1 \mathrm{H}, 8-\mathrm{H}, J_{8,7 \beta}=\right.$ $\left.13.5, J_{8,7 \alpha}=J_{8,9}=4.0 \mathrm{~Hz}\right), 2.55 \mathrm{br} . \mathrm{s}\left(1 \mathrm{H}, 5-\mathrm{H}, w_{1 / 2}=\right.$ $8.9 \mathrm{~Hz}), 2.68 \mathrm{t}\left(1 \mathrm{H}, 7 \beta-\mathrm{H}, J_{7 \beta, 7 \alpha}=J_{7 \beta, 8}=13.4 \mathrm{~Hz}\right)$, $3.62 \mathrm{~m}\left(1 \mathrm{H}, 22-\mathrm{H}, w_{1 / 2}=13.0 \mathrm{~Hz}\right), 4.17 \mathrm{~m}(1 \mathrm{H}, 2-\mathrm{H}$, $\left.w_{1 / 2}=12 \mathrm{~Hz}\right), 4.45 \mathrm{~m}\left(1 \mathrm{H}, 3-\mathrm{H}, w_{1 / 2}=21 \mathrm{~Hz}\right)$; in DMSO- $d_{6}(500.13 \mathrm{MHz}): 1.02 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{18} \mathrm{H}_{3}\right), 1.05 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}\right), 1.07 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{27} \mathrm{H}_{3}\right), 1.08 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}_{3}\right)$, 1.16 m and $1.76 \mathrm{~m}(2 \mathrm{H}, 15-\mathrm{H}), 1.19 \mathrm{~s}$ and $1.39 \mathrm{~s}(6 \mathrm{H}$, $\left.2,3-\mathrm{Me}_{2} \mathrm{C}\right), 1.23 \mathrm{~s}$ and $1.32 \mathrm{~s}\left(6 \mathrm{H}, 20,22-\mathrm{Me}_{2} \mathrm{C}\right), 1.28 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}\right), 1.34 \mathrm{~m}$ and $1.55 \mathrm{~m}(2 \mathrm{H}, 24-\mathrm{H}), 1.36 \mathrm{~m}$ and $1.39 \mathrm{~m}(2 \mathrm{H}, 23-\mathrm{H}), 1.38 \mathrm{~s}$ and $1.99 \mathrm{~s}(2 \mathrm{H}, 4-\mathrm{H})$, 1.52 m and $1.67 \mathrm{~m}(2 \mathrm{H}, 1-\mathrm{H}), 1.62 \mathrm{~m}$ and $1.81 \mathrm{~m}(2 \mathrm{H}$, $12-\mathrm{H}), 1.64 \mathrm{~m}$ and $1.77 \mathrm{~m}(2 \mathrm{H}, 11-\mathrm{H}), 1.69 \mathrm{~m}$ and $1.81 \mathrm{~m}(2 \mathrm{H}, 16-\mathrm{H}), 1.98$ d.t $(1 \mathrm{H}, 9-\mathrm{H}, J=11.0$, $4.0 \mathrm{~Hz}), 2.06$ d.d $\left(1 \mathrm{H}, 7 \alpha-\mathrm{H}, J_{7 \alpha, 8}=4.0, J_{7 \alpha, 7 \beta}=\right.$ $13.0 \mathrm{~Hz}), 2.20 \mathrm{~m}(1 \mathrm{H}, 17-\mathrm{H}), 2.68 \mathrm{br} . \mathrm{s}\left(1 \mathrm{H}, 5-\mathrm{H}, w_{1 / 2}=\right.$ $2 \mathrm{~Hz}), 2.71 \mathrm{t}\left(1 \mathrm{H}, 7 \beta-\mathrm{H}, J_{7 \beta, 7 \alpha}=J_{7 \beta, 8}=13.0 \mathrm{~Hz}\right)$, 3.30 d.t $\left(1 \mathrm{H}, 8-\mathrm{H}, J_{8,7 \beta}=13.0, J_{8,7 \alpha}=J_{8,9}=4.0 \mathrm{~Hz}\right)$,
$3.57 \mathrm{~m}(1 \mathrm{H}, 22-\mathrm{H}), 3.92 \mathrm{~s}(1 \mathrm{H}, 14-\mathrm{OH}), 4.13 \mathrm{~s}(1 \mathrm{H}$, $25-\mathrm{OH}), 4.14 \mathrm{~m}(1 \mathrm{H}, 2-\mathrm{H}), 4.27 \mathrm{~m}(1 \mathrm{H}, 3-\mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: in $\mathrm{CDCl}_{3}: 18.1 \mathrm{t}\left(\mathrm{C}^{11}\right)$, $18.4 \mathrm{q}\left(\mathrm{C}^{18}\right), 21.0 \mathrm{t}\left(\mathrm{C}^{16}\right), 21.3 \mathrm{q}\left(\mathrm{C}^{21}\right), 23.5 \mathrm{t}\left(\mathrm{C}^{23}\right)$, $25.3 \mathrm{t}\left(\mathrm{C}^{4}\right), 26.7 \mathrm{q}\left(\mathrm{C}^{19}\right), 25.8 \mathrm{q}$ and $28.4 \mathrm{q}\left(2,3-\mathrm{Me}_{2} \mathrm{C}\right)$, 26.7 q and $28.9 \mathrm{q}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right), 29.0 \mathrm{q}\left(\mathrm{C}^{27}\right), 29.6 \mathrm{q}$ $\left(\mathrm{C}^{26}\right), 31.3 \mathrm{t}\left(\mathrm{C}^{15}\right), 33.1 \mathrm{t}\left(\mathrm{C}^{12}\right), 34.2 \mathrm{t}\left(\mathrm{C}^{1}\right), 39.5 \mathrm{~s}\left(\mathrm{C}^{10}\right)$, $41.3 \mathrm{t}\left(\mathrm{C}^{24}\right), 41.3 \mathrm{t}\left(\mathrm{C}^{7}\right), 41.5 \mathrm{~d}\left(\mathrm{C}^{9}\right), 43.7 \mathrm{~d}\left(\mathrm{C}^{8}\right), 46.8 \mathrm{~s}$ $\left(\mathrm{C}^{13}\right), 49.7 \mathrm{~d}\left(\mathrm{C}^{17}\right), 50.5 \mathrm{~d}\left(\mathrm{C}^{5}\right), 70.2 \mathrm{~s}\left(\mathrm{C}^{25}\right), 70.8 \mathrm{~d}$ $\left(\mathrm{C}^{3}\right), 73.5 \mathrm{~d}\left(\mathrm{C}^{2}\right), 81.8 \mathrm{~d}\left(\mathrm{C}^{22}\right), 84.4 \mathrm{~s}\left(\mathrm{C}^{14}\right), 84.9 \mathrm{~s}$ $\left(\mathrm{C}^{20}\right), 106.8 \mathrm{~s}\left(20,22-\mathrm{Me}_{2} \mathbf{C}\right), 107.6 \mathrm{~s}\left(2,3-\mathrm{Me}_{2} \mathbf{C}\right)$, $212.1 \mathrm{~s}\left(\mathrm{C}^{6}\right)$; in DMSO (500.13 MHz): $17.8 \mathrm{t}\left(\mathrm{C}^{11}\right)$, $18.0 \mathrm{q}\left(\mathrm{C}^{18}\right), 21.0 \mathrm{t}\left(\mathrm{C}^{16}\right), 21.4 \mathrm{q}\left(\mathrm{C}^{21}\right), 23.1 \mathrm{t}\left(\mathrm{C}^{23}\right)$, $25.3 \mathrm{t}\left(\mathrm{C}^{4}\right), 25.9 \mathrm{q}\left(\mathrm{C}^{19}\right), 25.9 \mathrm{q}$ and $28.5 \mathrm{q}\left(2,3-\mathrm{Me}_{2} \mathrm{C}\right)$, 26.6 q and $29.0 \mathrm{q}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right), 29.0 \mathrm{q}\left(\mathrm{C}^{27}\right), 29.7 \mathrm{q}$ $\left(\mathrm{C}^{26}\right), 30.1 \mathrm{t}\left(\mathrm{C}^{15}\right), 32.8 \mathrm{t}\left(\mathrm{C}^{12}\right), 33.8 \mathrm{t}\left(\mathrm{C}^{1}\right), 38.9 \mathrm{~s}\left(\mathrm{C}^{10}\right)$, $40.8 \mathrm{t}\left(\mathrm{C}^{7}\right), 40.9 \mathrm{~d}\left(\mathrm{C}^{9}\right), 41.1 \mathrm{t}\left(\mathrm{C}^{24}\right), 42.7 \mathrm{~d}\left(\mathrm{C}^{8}\right), 46.3 \mathrm{~s}$ $\left(\mathrm{C}^{13}\right), 49.3 \mathrm{~d}\left(\mathrm{C}^{17}\right), 49.5 \mathrm{~d}\left(\mathrm{C}^{5}\right), 68.4 \mathrm{~s}\left(\mathrm{C}^{25}\right), 70.2 \mathrm{~d}$ $\left(\mathrm{C}^{3}\right), 73.0 \mathrm{~d}\left(\mathrm{C}^{2}\right), 81.3 \mathrm{~d}\left(\mathrm{C}^{22}\right), 82.8 \mathrm{~s}\left(\mathrm{C}^{14}\right), 84.1 \mathrm{~s}$ $\left(\mathrm{C}^{20}\right), 105.8 \mathrm{~s}\left(20,22-\mathrm{Me}_{2} \mathbf{C}\right), 106.8 \mathrm{~s}\left(2,3-\mathrm{Me}_{2} \mathbf{C}\right)$, $211.9 \mathrm{~s}\left(\mathrm{C}^{6}\right)$.
(20R,22R)-14 α-Hydroxy-2 $\beta, 3 \beta: 20,22$-bis(iso-propylidenedioxy)-5 $5,8 \alpha$-cholest-24(25)-en-6-ones [VI, 24,25(25,26)-anhydro-7,8 α-dihydro-20-hydroxyecdysone 2,3:20,22-diacetonides] (mixture of isomers). A solution of $1.3 \mathrm{~g}(2.40 \mathrm{mmol})$ of isomeric alkenes III (prepared as described in $[12,16]$) in 30 ml of diethyl ether was added under stirring in an argon atmosphere to a suspension of $0.27 \mathrm{~g}(7.2 \mathrm{mmol})$ of LiAlH_{4} in 30 ml of diethyl ether, cooled to $\sim 0^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at room temperature, cooled to $0^{\circ} \mathrm{C}, 5 \mathrm{ml}$ of water was added, and $\sim 10 \mathrm{ml}$ of 5% hydrochloric acid was added to a weakly acidic reaction. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$). The extracts were combined with the organic phase and evaporated under reduced pressure, and the residue was subjected to chromatography on 30 g of silica gel using chloroform as eluent to isolate $0.39 \mathrm{~g}(30 \%)$ of compound VI, $R_{\mathrm{f}} 0.5\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 20: 1\right)$, and 0.85 g (65\%) of previously described [8] alcohols VIII.

Compound (VI). mp $190-192^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}=+16.1^{\circ}$ ($c=8.83, \mathrm{CHCl}_{3}$). IR spectrum, $v, \mathrm{~cm}^{-1}: 1695(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 0.91 \mathrm{~s}$ and 0.96 s $\left(3 \mathrm{H}, \mathrm{C}^{18} \mathrm{H}_{3}, \mathrm{C}^{18} \mathrm{H}_{3}\right) ; 0.94 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}\right) ; 1.11 \mathrm{~s}$ and $1.14 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}, \mathrm{C}^{21} \mathrm{H}_{3}\right) ; 1.28 \mathrm{~s}, 1.38 \mathrm{~s}, 1.40 \mathrm{~s}$, and 1.50 s (3 H each, $\mathrm{Me}_{2} \mathrm{C}$); $1.78-2.20 \mathrm{~m}\left(13 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right.$); $1.62 \mathrm{~s}\left(\sim 2.7 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}_{3}\right) ; 1.70 \mathrm{~s}$ and $1.72 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{27} \mathrm{H}_{3}\right.$, $\left.\mathrm{C}^{27} \mathrm{H}_{3}\right) ; 2.22 \mathrm{~m}(1 \mathrm{H}, 7 \alpha-\mathrm{H}) ; 2.30 \mathrm{~m}(1 \mathrm{H}, 17-\mathrm{H})$; $2.37 \mathrm{~m}(1 \mathrm{H}, 8-\mathrm{H}) ; 2.57 \mathrm{br} . \mathrm{s}\left(1 \mathrm{H}, 5-\mathrm{H}, w_{1 / 2}=10.7 \mathrm{~Hz}\right)$;
$2.70 \mathrm{t}(1 \mathrm{H}, 7 \beta-\mathrm{H}, J=13.4 \mathrm{~Hz}) ; 3.65-3.71 \mathrm{~m}(1 \mathrm{H}$, $\left.22-\mathrm{H}, 22^{\prime}-\mathrm{H}\right) ; 4.20 \mathrm{~m}\left(1 \mathrm{H}, 2-\mathrm{H}, w_{1 / 2}=13.0 \mathrm{~Hz}\right) ; 4.49 \mathrm{~m}$ $\left(1 \mathrm{H}, 3-\mathrm{H}, w_{1 / 2}=22.6 \mathrm{~Hz}\right) ; 4.69 \mathrm{br} . \mathrm{s}$ and $4.72 \mathrm{br} . \mathrm{s}$ $\left(1.3 \mathrm{H}, 26-\mathrm{H}, w_{1 / 2}=6.8 \mathrm{~Hz}\right) ; 5.17 \mathrm{t}\left(0.7 \mathrm{H}, 24^{\prime}-\mathrm{H}, J=\right.$ $6.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: 17.9 q $\left(\mathrm{C}^{18}\right), 18.2 \mathrm{t}\left(\mathrm{C}^{11}\right), 18.6 \mathrm{q}\left(\mathrm{C}^{27}\right), 21.1 \mathrm{t}\left(\mathrm{C}^{16}\right), 21.4 \mathrm{q}$ $\left(\mathrm{C}^{21}\right), 22.5 \mathrm{q}\left(\mathrm{C}^{27}\right), 25.4 \mathrm{t}\left(\mathrm{C}^{23}\right), 25.7 \mathrm{q}\left(\mathrm{C}^{19}\right), 25.9 \mathrm{q}$ $\left(\mathrm{C}^{26}\right), 26.0 \mathrm{q}$ and $28.5 \mathrm{q}\left(2,3-\mathrm{Me}_{2} \mathrm{C}\right), 26.8 \mathrm{q}$ and 29.6 q (20,22-Me $\left.{ }_{2} \mathrm{C}\right), 27.7 \mathrm{t}\left(\mathrm{C}^{4}\right), 31.5 \mathrm{t}\left(\mathrm{C}^{15}\right), 33.3 \mathrm{t}\left(\mathrm{C}^{12}\right)$, $34.4 \mathrm{t}\left(\mathrm{C}^{24}\right), 35.0 \mathrm{t}\left(\mathrm{C}^{1}\right), 39.6 \mathrm{~s}\left(\mathrm{C}^{10}\right), 41.3 \mathrm{t}\left(\mathrm{C}^{7}\right), 41.6 \mathrm{~d}$ and $41.7 \mathrm{~d}\left(\mathrm{C}^{9}\right), 43.8 \mathrm{~d}$ and $43.9 \mathrm{~d}\left(\mathrm{C}^{8}\right), 46.9 \mathrm{~s}\left(\mathrm{C}^{13}\right)$, 50.0 d and $50.1 \mathrm{~d}\left(\mathrm{C}^{17}\right), 50.6 \mathrm{~d}\left(\mathrm{C}^{5}\right), 70.9 \mathrm{~d}\left(\mathrm{C}^{3}\right), 73.5 \mathrm{~d}$ $\left(\mathrm{C}^{2}\right), 80.6 \mathrm{~d}$ and $81.0 \mathrm{~d}\left(\mathrm{C}^{22}\right), 84.1 \mathrm{~s}\left(\mathrm{C}^{20}\right), 85.0 \mathrm{~s}\left(\mathrm{C}^{14}\right)$, 106.7 s and $106.8 \mathrm{~s}\left(20,22-\mathrm{Me}_{2} \mathbf{C}\right), 107.6 \mathrm{~s}\left(2,3-\mathrm{Me}_{2} \mathbf{C}\right)$, $110.0 \mathrm{t}\left(\mathrm{C}^{26}\right), 120.4 \mathrm{~d}\left(\mathrm{C}^{24}\right), 133.5 \mathrm{q}\left(\mathrm{C}^{25^{\prime}}\right), 145.3 \mathrm{~s}$ $\left(\mathrm{C}^{25}\right), 211.9 \mathrm{~s}\left(\mathrm{C}^{6}\right)$.
(20R,22R)-2ß,3p:20,22-Bis(isopropylidenedioxy)$\mathbf{5 \alpha}$-cholesta-7,14-diene-6 $\mathbf{6}, \mathbf{2 5}$-diol (IX). Diacetonide II, $1 \mathrm{~g}(1.79 \mathrm{mmol})$, was dissolved in 50 ml of anhydrous THF, $0.198 \mathrm{~g}(5.37 \mathrm{mmol})$ of LiAlH_{4} was added, and the mixture was stirred for 1 h at $\sim 25^{\circ} \mathrm{C}$ under argon. The mixture was cooled to $0^{\circ} \mathrm{C}, 5 \mathrm{ml}$ of water was added, and $\sim 7 \mathrm{ml}$ of 5% hydrochloric acid was added to a weakly acidic reaction. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate ($3 \times 70 \mathrm{ml}$). The extracts were combined with the organic phase and evaporated under reduced pressure, and the residue was subjected to chromatography on 40 g of silica gel using chloroform as eluent to isolate $0.1 \mathrm{~g}(10 \%)$ of dienol IX, $R_{\mathrm{f}} 0.7$ $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1\right), 0.3 \mathrm{~g}(30 \%)$ of $\mathbf{V}, R_{\mathrm{f}} 0.63$ $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1\right)$, and $0.53 \mathrm{~g}(53 \%)$ of VII.

Dienol (IX). mp $90-92^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{19}=-62.8^{\circ}(c=7.32$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 1.01 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{C}^{18} \mathrm{H}_{3}\right) ; 1.04 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}\right) ; 1.18 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}\right)$; $1.22 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}_{3}, \mathrm{C}^{27} \mathrm{H}_{3}\right) ; 1.29 \mathrm{~s}, 1.31 \mathrm{~s}, 1.41 \mathrm{~s}$, and 1.50 s (3 H each, $\mathrm{Me}_{2} \mathrm{C}$); $1.52-2.58 \mathrm{~m}\left(15 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right.$); $3.72 \mathrm{~m}\left(1 \mathrm{H}, 22-\mathrm{H}, w_{1 / 2}=15.3 \mathrm{~Hz}\right) ; 3.81 \mathrm{~m}(1 \mathrm{H}, 6-\mathrm{H}$, $\left.w_{1 / 2}=10 \mathrm{~Hz}\right) ; 4.05 \mathrm{~m}\left(1 \mathrm{H}, 2-\mathrm{H}, w_{1 / 2}=20 \mathrm{~Hz}\right) ; 4.19 \mathrm{~m}$ $\left(1 \mathrm{H}, 3-\mathrm{H}, w_{1 / 2}=11 \mathrm{~Hz}\right) ; 5.62$ br.s $\left(1 \mathrm{H}, 15-\mathrm{H}, w_{1 / 2}=\right.$ $8 \mathrm{~Hz}) ; 5.89$ br.s $\left(1 \mathrm{H}, 7-\mathrm{H}, w_{1 / 2}=9 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}, \mathrm{ppm}: 18.4 \mathrm{q}\left(\mathrm{C}^{18}\right), 20.9 \mathrm{t}\left(\mathrm{C}^{11}\right)$, $21.1 \mathrm{q}\left(\mathrm{C}^{21}\right), 23.7 \mathrm{t}\left(\mathrm{C}^{23}\right), 24.8 \mathrm{q}\left(\mathrm{C}^{19}\right), 28.3 \mathrm{t}\left(\mathrm{C}^{4}\right), 29.0$ $\mathrm{q}\left(\mathrm{C}^{27}\right), 29.6 \mathrm{q}\left(\mathrm{C}^{26}\right), 26.5 \mathrm{q}$ and $28.6 \mathrm{q}\left(2,3-\mathrm{Me}_{2} \mathrm{C}\right)$, 26.8 q and $28.8 \mathrm{q}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right), 30.9 \mathrm{t}\left(\mathrm{C}^{12}\right), 34.3 \mathrm{~s}$ $\left(\mathrm{C}^{10}\right), 37.2 \mathrm{~d}\left(\mathrm{C}^{9}\right), 39.2 \mathrm{t}\left(\mathrm{C}^{16}\right), 40.4 \mathrm{t}\left(\mathrm{C}^{24}\right), 41.2 \mathrm{t}\left(\mathrm{C}^{1}\right)$, $43.3 \mathrm{~d}\left(\mathrm{C}^{5}\right), 47.3 \mathrm{~s}\left(\mathrm{C}^{13}\right), 57.6 \mathrm{~d}\left(\mathrm{C}^{17}\right), 70.3 \mathrm{~s}\left(\mathrm{C}^{25}\right)$, $70.8 \mathrm{~d}\left(\mathrm{C}^{6}\right), 72.3 \mathrm{~d}\left(\mathrm{C}^{2}\right), 72.8 \mathrm{~d}\left(\mathrm{C}^{3}\right), 81.7 \mathrm{~d}\left(\mathrm{C}^{22}\right)$, $83.6 \mathrm{~s}\left(\mathrm{C}^{20}\right), 106.8 \mathrm{~s}\left(20,22-\mathrm{Me}_{2} \mathbf{C}\right), 107.9 \mathrm{~s}\left(2,3-\mathrm{Me}_{2} \mathbf{C}\right)$, $120.3 \mathrm{~d}\left(\mathrm{C}^{15}\right), 121.2 \mathrm{~d}\left(\mathrm{C}^{7}\right), 135.2 \mathrm{~s}\left(\mathrm{C}^{14}\right), 150.0 \mathrm{~s}\left(\mathrm{C}^{8}\right)$.
(20R,22R)-2 $\beta, 3 \beta: 20,22-B i s(i s o p r o p y l i d e n e d i o x y)-~$ $\mathbf{5 \beta}, 8 \alpha$-cholest-14-ene-6 $\boldsymbol{\beta}, 25$-diol (X). Diacetonide II, $0.3 \mathrm{~g}(0.54 \mathrm{mmol})$, was dissolved in 20 ml of anhydrous THF, $0.1 \mathrm{~g}(2.70 \mathrm{mmol})$ of LiAlH_{4} was added, and the mixture was stirred for 1 h at $\sim 25^{\circ} \mathrm{C}$ under argon. The mixture was cooled to $0^{\circ} \mathrm{C}, 5 \mathrm{ml}$ of water was added, and $\sim 5 \mathrm{ml}$ of 5% hydrochloric acid was added to a weakly acidic reaction. The organic layer was separated, and the aqueous phase was extracted with ethyl acetate $(3 \times 50 \mathrm{ml})$. The extracts were combined with the organic phase and evaporated under reduced pressure, and the residue was subjected to chromatography on 20 g of silica gel using chloroform as eluent to isolate $0.05 \mathrm{~g}(17 \%)$ of diol $\mathbf{X}, R_{\mathrm{f}} 0.69$ $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1\right), 0.088 \mathrm{~g}(30 \%)$ of $\mathbf{V}, R_{\mathrm{f}} 0.63$ $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1\right)$, and $0.15 \mathrm{~g}(50 \%)$ of VII.

Diol (X). mp $75-77^{\circ} \mathrm{C},[\alpha]_{D}^{24}=+35.6^{\circ}(c=2.74$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 1.13 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{C}^{18} \mathrm{H}_{3}\right) ; 1.16 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}\right) ; 1.18 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}\right)$; $1.22 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}_{3}, \mathrm{C}^{27} \mathrm{H}_{3}\right) ; 1.30 \mathrm{~s}, 1.41 \mathrm{~s}$, and 1.51 s ($2: 1: 1,12 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}$); 1.60-2.52 m ($20 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$); $3.07 \mathrm{~m}(1 \mathrm{H}, 8-\mathrm{H}) ; 3.75 \mathrm{~m}\left(1 \mathrm{H}, 22-\mathrm{H}, w_{1 / 2}=21 \mathrm{~Hz}\right)$; 3.95 br.s $\left(1 \mathrm{H}, 6-\mathrm{H}, w_{1 / 2}=12 \mathrm{~Hz}\right) ; 4.36 \mathrm{~m}(1 \mathrm{H}, 2-\mathrm{H}$, $\left.w_{1 / 2}=13 \mathrm{~Hz}\right) ; 4.63 \mathrm{~m}\left(1 \mathrm{H}, 3-\mathrm{H}, w_{1 / 2}=16 \mathrm{~Hz}\right)$; 5.35 br.s $\left(1 \mathrm{H}, 15-\mathrm{H}, w_{1 / 2}=13 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}, \mathrm{ppm}: 17.7 \mathrm{t}\left(\mathrm{C}^{11}\right), 20.8 \mathrm{q}\left(\mathrm{C}^{18}\right), 23.7 \mathrm{t}$ $\left(\mathrm{C}^{23}\right), 25.8 \mathrm{q}\left(\mathrm{C}^{21}\right), 26.7 \mathrm{q}$ and $28.9 \mathrm{q}\left(2,3-\mathrm{Me}_{2} \mathrm{C}\right)$, 27.3 q and $28.9 \mathrm{q}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right), 28.6 \mathrm{q}\left(\mathrm{C}^{19}\right), 29.7 \mathrm{q}$ $\left(\mathrm{C}^{26}, \mathrm{C}^{27}\right), 30.5 \mathrm{t}\left(\mathrm{C}^{16}\right), 31.0 \mathrm{~d}\left(\mathrm{C}^{9}\right), 31.6 \mathrm{t}\left(\mathrm{C}^{4}\right), 33.4 \mathrm{t}$ $\left(\mathrm{C}^{10}\right), 36.0 \mathrm{t}\left(\mathrm{C}^{7}\right), 37.9 \mathrm{t}\left(\mathrm{C}^{1}\right), 41.0 \mathrm{~d}\left(\mathrm{C}^{5}\right), 41.4 \mathrm{~s}\left(\mathrm{C}^{12}\right)$, $43.1 \mathrm{t}\left(\mathrm{C}^{24}\right), 46.8 \mathrm{~s}\left(\mathrm{C}^{13}\right), 48.2 \mathrm{~d}\left(\mathrm{C}^{8}\right), 59.5 \mathrm{~d}\left(\mathrm{C}^{17}\right)$, $70.3 \mathrm{~s}\left(\mathrm{C}^{25}\right), 71.6 \mathrm{~d}\left(\mathrm{C}^{6}\right), 72.7 \mathrm{~d}\left(\mathrm{C}^{3}\right), 74.6 \mathrm{~d}\left(\mathrm{C}^{2}\right)$, $81.8 \mathrm{~d}\left(\mathrm{C}^{22}\right), 83.7 \mathrm{~s}\left(\mathrm{C}^{20}\right), 106.7 \mathrm{~s}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right)$, $107.0 \mathrm{~s}\left(2,3-\mathrm{Me}_{2} \mathrm{C}\right), 120.6 \mathrm{~d}\left(\mathrm{C}^{15}\right), 154.4 \mathrm{~s}\left(\mathrm{C}^{14}\right)$.
(20R,22R)-2ß,3ß:20,22-Bis(isopropylidenedioxy)$\mathbf{5 \beta}, \mathbf{8 \alpha}$-cholestane-6 $\boldsymbol{\alpha}, \mathbf{1 4 \alpha}, \mathbf{2 5}$-triol (XI). Diacetonide $\mathbf{V}, 0.18 \mathrm{~g}(0.32 \mathrm{mmol})$, was dissolved in 7 ml of anhydrous THF, $0.025 \mathrm{~g}(0.64 \mathrm{mmol})$ of LiAlH_{4} was added, and the mixture was stirred for 0.5 h at $\sim 25^{\circ} \mathrm{C}$ under argon. The mixture was cooled to $0^{\circ} \mathrm{C}, 5 \mathrm{ml}$ of water was added, and $\sim 7 \mathrm{ml}$ of 5% hydrochloric acid was added to a weakly acidic reaction. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate ($3 \times 40 \mathrm{ml}$). The extracts were combined with the organic phase and evaporated under reduced pressure, and the residue was subjected to chromatography on 8 g of silica gel using chloroform as eluent. Yield $0.16 \mathrm{~g}(90 \%), R_{\mathrm{f}} 0.34\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$, $10: 1), \mathrm{mp} 137-139^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}=+25.7^{\circ}(c=9.33$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: in $\mathrm{CDCl}_{3}: 1.00 \mathrm{~s}$
$\left(3 \mathrm{H}, \mathrm{C}^{18} \mathrm{H}_{3}\right) ; 1.08 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}\right) ; 1.18 \mathrm{~s}\left(9 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}\right.$, $\left.\mathrm{C}^{26} \mathrm{H}_{3}, \mathrm{C}^{27} \mathrm{H}_{3}\right) ; 1.27 \mathrm{~s}, 1.37 \mathrm{~s}$, and $1.47 \mathrm{~s}(2: 1: 1,12 \mathrm{H}$, $\left.\mathrm{Me}_{2} \mathrm{C}\right) ; 1.60-2.00 \mathrm{~m}\left(20 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right) ; 2.13 \mathrm{~m}(1 \mathrm{H}$, $\left.17-\mathrm{H}, w_{1 / 2}=19 \mathrm{~Hz}\right) ; 2.32 \mathrm{~m}\left(1 \mathrm{H}, 8-\mathrm{H}, w_{1 / 2}=24 \mathrm{~Hz}\right)$; $3.62 \mathrm{~m}\left(1 \mathrm{H}, 22-\mathrm{H}, w_{1 / 2}=16 \mathrm{~Hz}\right) ; 3.94$ br.s $(1 \mathrm{H}, 6-\mathrm{H}$, $\left.w_{1 / 2}=10 \mathrm{~Hz}\right) ; 4.29 \mathrm{~m}\left(1 \mathrm{H}, 2-\mathrm{H}, w_{1 / 2}=12 \mathrm{~Hz}\right) ; 4.58 \mathrm{~m}$ $\left(1 \mathrm{H}, 3-\mathrm{H}, w_{1 / 2}=16 \mathrm{~Hz}\right)$; in DMSO- $d_{6}(500.13 \mathrm{MHz}):$ $0.92 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{18} \mathrm{H}_{3}\right), 1.01 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}\right), 1.06 \mathrm{~s}\left(\mathrm{C}^{27} \mathrm{H}_{3}\right)$, $1.07 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}, \mathrm{C}^{26} \mathrm{H}_{3}\right), 1.18 \mathrm{~s}$ and $1.37 \mathrm{~s}(6 \mathrm{H}$, $\left.2,3-\mathrm{Me}_{2} \mathrm{C}\right), 1.22 \mathrm{~s}$ and $1.31 \mathrm{~s}\left(6 \mathrm{H}, 20,22-\mathrm{Me}_{2} \mathrm{C}\right)$, 1.15 m and $1.79 \mathrm{~m}(2 \mathrm{H}, 15-\mathrm{H}), 1.30 \mathrm{~m}$ and 2.33 m $(2 \mathrm{H}, 1-\mathrm{H}), 1.34 \mathrm{~m}$ and $1.37 \mathrm{~m}(2 \mathrm{H}, 23-\mathrm{H}), 1.31 \mathrm{~m}$ and $1.54 \mathrm{~m}(2 \mathrm{H}, 24-\mathrm{H}), 1.35 \mathrm{~m}$ and $1.39 \mathrm{~m}(2 \mathrm{H}, 11-\mathrm{H})$, 1.51 m and $1.71 \mathrm{~m}(2 \mathrm{H}, 12-\mathrm{H}), 1.46 \mathrm{~m}$ and 1.71 m $(2 \mathrm{H}, 7-\mathrm{H}), 1.63 \mathrm{~m}$ and $1.68 \mathrm{~m}(2 \mathrm{H}, 4-\mathrm{H}), 1.37 \mathrm{~m}(1 \mathrm{H}$, $5-\mathrm{H}), 1.66 \mathrm{~m}$ and $1.79 \mathrm{~m}(2 \mathrm{H}, 16-\mathrm{H}), 1.81 \mathrm{~m}(1 \mathrm{H}$, $9-\mathrm{H}), 2.20 \mathrm{~m}(1 \mathrm{H}, 17-\mathrm{H}), 2.31 \mathrm{~m}(1 \mathrm{H}, 8-\mathrm{H}), 3.56 \mathrm{~m}$ $(1 \mathrm{H}, 22-\mathrm{H}), 3.65 \mathrm{~s}(1 \mathrm{H}, 14-\mathrm{OH}), 3.75 \mathrm{~m}(1 \mathrm{H}, 6-\mathrm{H})$, $4.13 \mathrm{~s}(1 \mathrm{H}, 25-\mathrm{OH}), 4.19 \mathrm{~m}(1 \mathrm{H}, 2-\mathrm{H}), 4.39 \mathrm{~d}(1 \mathrm{H}$, $6-\mathrm{OH}, J=3.5 \mathrm{~Hz}), 4.51 \mathrm{~m}(1 \mathrm{H}, 3-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectrum, $\delta_{\mathrm{C}}, \mathrm{ppm}$: in $\mathrm{CDCl}_{3}: 18.0 \mathrm{t}\left(\mathrm{C}^{11}\right) ; 18.3 \mathrm{q}\left(\mathrm{C}^{18}\right)$; $21.4 \mathrm{t}\left(\mathrm{C}^{16}\right) ; 23.5 \mathrm{t}\left(\mathrm{C}^{23}\right) ; 25.9 \mathrm{q}\left(\mathrm{C}^{21}\right) ; 26.7 \mathrm{q}\left(\mathrm{C}^{19}\right)$; 27.6 q, 28.6 q, 28.8 q, and 28.9 q ($\left.\mathbf{M e}_{2} \mathrm{C}\right) ; 29.6$ q (C^{26}, C^{27}); $31.2 \mathrm{t}\left(\mathrm{C}^{15}\right) ; 31.5 \mathrm{t}\left(\mathrm{C}^{4}\right) ; 33.4 \mathrm{~s}\left(\mathrm{C}^{7}, \mathrm{C}^{10}\right) ; 34.0 \mathrm{t}$ $\left(\mathrm{C}^{12}\right) ; 36.5 \mathrm{t}\left(\mathrm{C}^{1}\right) ; 36.7 \mathrm{~d}\left(\mathrm{C}^{8}\right) ; 41.3 \mathrm{t}\left(\mathrm{C}^{24}\right) ; 42.3 \mathrm{~d}\left(\mathrm{C}^{5}\right.$, $\left.\mathrm{C}^{9}\right) ; 46.6 \mathrm{~s}\left(\mathrm{C}^{13}\right) ; 49.8 \mathrm{~d}\left(\mathrm{C}^{17}\right) ; 70.2 \mathrm{~s}\left(\mathrm{C}^{25}\right) ; 71.8 \mathrm{~d}\left(\mathrm{C}^{6}\right)$; 72.6 d ($\left.\mathrm{C}^{3}\right) ; 74.6 \mathrm{~s}\left(\mathrm{C}^{2}\right) ; 81.8 \mathrm{~d}\left(\mathrm{C}^{22}\right) ; 84.6 \mathrm{~s}\left(\mathrm{C}^{14}\right) ;$ $86.1 \mathrm{~s}\left(\mathrm{C}^{20}\right) ; 106.7 \mathrm{~s}\left(20,22-\mathrm{Me}_{2} \mathbf{C}\right) ; 107.0 \mathrm{~s}\left(2,3-\mathrm{Me}_{2} \mathbf{C}\right) ;$ in DMSO (500.13 MHz): $17.9 \mathrm{t}\left(\mathrm{C}^{11}\right), 18.1 \mathrm{q}\left(\mathrm{C}^{18}\right)$, $21.2 \mathrm{t}\left(\mathrm{C}^{16}\right), 21.4 \mathrm{q}\left(\mathrm{C}^{21}\right), 23.2 \mathrm{t}\left(\mathrm{C}^{23}\right), 25.9 \mathrm{q}$ and $28.6 \mathrm{q}\left(2,3-\mathrm{Me}_{2} \mathrm{C}\right), 26.7 \mathrm{q}$ and $29.0 \mathrm{q}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right)$, $27.3 \mathrm{q}\left(\mathrm{C}^{19}\right), 29.0 \mathrm{q}\left(\mathrm{C}^{27}\right), 29.6 \mathrm{q}\left(\mathrm{C}^{26}\right), 30.4 \mathrm{t}\left(\mathrm{C}^{15}\right)$, $31.7 \mathrm{t}\left(\mathrm{C}^{4}\right), 32.8 \mathrm{~s}\left(\mathrm{C}^{7}\right), 33.0 \mathrm{~s}\left(\mathrm{C}^{10}\right), 33.6 \mathrm{t}\left(\mathrm{C}^{12}\right), 35.9 \mathrm{~d}$ $\left(\mathrm{C}^{8}\right), 36.2 \mathrm{t}\left(\mathrm{C}^{1}\right), 41.1 \mathrm{t}\left(\mathrm{C}^{24}\right), 41.2 \mathrm{~d}\left(\mathrm{C}^{5}\right), 41.5 \mathrm{~d}\left(\mathrm{C}^{9}\right)$, $46.1 \mathrm{~s}\left(\mathrm{C}^{13}\right), 49.3 \mathrm{~d}\left(\mathrm{C}^{17}\right), 68.4 \mathrm{~s}\left(\mathrm{C}^{25}\right), 70.3 \mathrm{~d}\left(\mathrm{C}^{6}\right)$, $71.9 \mathrm{~d}\left(\mathrm{C}^{3}\right), 74.2 \mathrm{~s}\left(\mathrm{C}^{2}\right), 81.3 \mathrm{~d}\left(\mathrm{C}^{22}\right), 83.9 \mathrm{~s}\left(\mathrm{C}^{14}\right), 84.3 \mathrm{~s}$ $\left(\mathrm{C}^{20}\right), 105.8 \mathrm{~s}\left(20,22-\mathrm{Me}_{2} \mathbf{C}\right), 106.0 \mathrm{~s}\left(2,3-\mathrm{Me}_{2} \mathbf{C}\right)$.
(20R,22R)-2ß,3ß,14 $, 25-T e t r a h y d r o x y-20,22-i s o-~$ propylidenedioxy-5 $\mathbf{5 \beta}, 8 \alpha$-cholestan-6-one (XII, 7,8 $\alpha-$ dihydro-20-hydroxyecdysone 20,22-acetonide (XII). A mixture of $0.22 \mathrm{~g}(0.46 \mathrm{mmol})$ of compound \mathbf{V} and 3 ml of glacial acetic acid was stirred for 5.5 h . The mixture was evaporated, and the residue was subjected to chromatography on 9 g of silica gel using chloro-form-methanol (20:1) as eluent. Yield $0.1 \mathrm{~g}(49 \%)$, $R_{\mathrm{f}} 0.60\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 5: 1\right), \mathrm{mp} 134-136^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}=$ $+7.2^{\circ}\left(c=8.67, \mathrm{CHCl}_{3}\right)$. IR spectrum: $v(\mathrm{C}=\mathrm{O}) 1700$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 1.06 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{C}^{18} \mathrm{H}_{3}\right), 1.11 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}\right), 1.21 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}_{3}, \mathrm{C}^{27} \mathrm{H}_{3}\right)$, $1.29 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}\right), 1.39 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}\right), 1.42-2.10 \mathrm{~m}$ (19H, CH, CH 2), $2.31 \mathrm{t}(1 \mathrm{H}, 8-\mathrm{H}, J=12.5 \mathrm{~Hz}), 2.43 \mathrm{~m}$
$\left(1 \mathrm{H}, 5-\mathrm{H}, w_{1 / 2}=11 \mathrm{~Hz}\right), 2.67 \mathrm{t}(1 \mathrm{H}, 7 \beta-\mathrm{H}, J=$ $14.5 \mathrm{~Hz}), 3.63 \mathrm{~m}\left(1 \mathrm{H}, 22-\mathrm{H}, w_{1 / 2}=15 \mathrm{~Hz}\right), 3.84 \mathrm{~m}$ $\left(1 \mathrm{H}, 2-\mathrm{H}, w_{1 / 2}=18 \mathrm{~Hz}\right), 3.93 \mathrm{~m}\left(1 \mathrm{H}, 3-\mathrm{H}, w_{1 / 2}=\right.$ $12 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}, \mathrm{ppm}: 18.4 \mathrm{q}$ $\left(\mathrm{C}^{18}\right), 20.1 \mathrm{t}\left(\mathrm{C}^{11}\right)$, $21.1 \mathrm{t}\left(\mathrm{C}^{16}\right)$, $21.4 \mathrm{q}\left(\mathrm{C}^{21}\right), 23.4 \mathrm{t}$ $\left(\mathrm{C}^{23}\right), 25.0 \mathrm{t}\left(\mathrm{C}^{4}\right), 26.7 \mathrm{q}\left(\mathrm{C}^{19}\right), 26.9 \mathrm{q}$ and 28.9 q $\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right), 29.1 \mathrm{q}\left(\mathrm{C}^{27}\right), 29.4 \mathrm{q}\left(\mathrm{C}^{26}\right), 31.3 \mathrm{t}\left(\mathrm{C}^{15}\right)$, $33.5 \mathrm{t}\left(\mathrm{C}^{12}, \mathrm{C}^{1}\right), 39.4 \mathrm{~s}\left(\mathrm{C}^{10}\right), 41.0 \mathrm{~d}\left(\mathrm{C}^{9}\right), 41.1 \mathrm{t}\left(\mathrm{C}^{7}\right)$, $41.3 \mathrm{t}\left(\mathrm{C}^{24}\right), 43.0 \mathrm{~d}\left(\mathrm{C}^{8}\right), 46.8 \mathrm{~s}\left(\mathrm{C}^{13}\right), 49.8 \mathrm{~d}\left(\mathrm{C}^{17}\right)$, $51.1 \mathrm{~d}\left(\mathrm{C}^{5}\right), 70.4 \mathrm{~s}\left(\mathrm{C}^{25}\right), 66.7 \mathrm{~d}\left(\mathrm{C}^{3}\right), 69.5 \mathrm{~d}\left(\mathrm{C}^{2}\right)$, $81.9 \mathrm{~d}\left(\mathrm{C}^{22}\right), 84.4 \mathrm{~s}\left(\mathrm{C}^{20}\right), 85.0 \mathrm{~s}\left(\mathrm{C}^{14}\right), 106.8 \mathrm{~s}$ (20,22-Me $\left.{ }_{2} \mathrm{C}\right), 212.8 \mathrm{~s}\left(\mathrm{C}^{6}\right)$.
(20R,22R)-2 $\beta, 3 \beta, 25-T r i h y d r o x y-20,22-i s o p r o p y l i-~$ denedioxy-5 $\beta, 8 \alpha$-cholest-14-en-6-one (XIII, 7,8 α-dihydrostachysterone B 20,22-acetonide). A mixture of $0.125 \mathrm{~g}(0.22 \mathrm{mmol})$ of compound \mathbf{V} and 3 ml of 70% acetic acid was stirred for $1.5 \mathrm{~h}, 0.045 \mathrm{~g}(0.33 \mathrm{mmol})$ of ZnCl_{2} was added, and the mixture was stirred for 2.5 h until the reaction was complete (TLC). The mixture was diluted with 30 ml of water and extracted with butanol $(3 \times 20 \mathrm{ml})$, the extracts were combined and evaporated under reduced pressure, and the residue was subjected to chromatography on 8 g of silica gel using chloroform-methanol (20:1) as eluent. Yield $0.067 \mathrm{~g}(60 \%), R_{\mathrm{f}} 0.47\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 20: 1\right)$, mp 118$120^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{24}=-123^{\circ}\left(c=1.18, \mathrm{CHCl}_{3}\right)$. IR spectrum: $v(\mathrm{C}=\mathrm{O}) 1700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $1.16 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{18} \mathrm{H}_{3}, \mathrm{C}^{21} \mathrm{H}_{3}\right), 1.21 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}_{3}\right.$, $\left.\mathrm{C}^{27} \mathrm{H}_{3}\right), 1.28 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}\right), 1.40 \mathrm{~s}$ and $1.41 \mathrm{~s}(3 \mathrm{H}$ each, $\left.\mathrm{Me}_{2} \mathrm{C}\right), 1.46-2.21 \mathrm{~m}\left(15 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.15 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}$, $7 \alpha-\mathrm{H}, J=14.5,4.4 \mathrm{~Hz}), 2.36 \mathrm{~m}\left(1 \mathrm{H}, 5-\mathrm{H}, w_{1 / 2}=\right.$ $10 \mathrm{~Hz}), 2.48$ d.d $(1 \mathrm{H}, 17-\mathrm{H}, J=14.5,11.0 \mathrm{~Hz}), 2.73 \mathrm{t}$ $(1 \mathrm{H}, 7 \beta-\mathrm{H}, J=14.5 \mathrm{~Hz}), 3.03$ d.t $(1 \mathrm{H}, 8-\mathrm{H}, J=14.5$, $4.0 \mathrm{~Hz}), 3.72 \mathrm{~m}\left(1 \mathrm{H}, 22-\mathrm{H}, w_{1 / 2}=5 \mathrm{~Hz}\right), 3.87 \mathrm{~m}(1 \mathrm{H}$, $\left.2-\mathrm{H}, w_{1 / 2}=24 \mathrm{~Hz}\right), 3.97 \mathrm{~m}\left(1 \mathrm{H}, 3-\mathrm{H}, w_{1 / 2}=11 \mathrm{~Hz}\right)$, $5.33 \mathrm{~m}\left(1 \mathrm{H}, 15-\mathrm{H}, w_{1 / 2}=8 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}, \mathrm{ppm}: 17.9 \mathrm{t}\left(\mathrm{C}^{11}\right), 21.0 \mathrm{q}\left(\mathrm{C}^{18}, \mathrm{C}^{21}\right), 23.6 \mathrm{t}$ $\left(\mathrm{C}^{23}\right), 24.3 \mathrm{t}\left(\mathrm{C}^{16}\right), 26.7 \mathrm{q}\left(\mathrm{C}^{19}\right), 28.8 \mathrm{q}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right)$, $29.0 \mathrm{q}\left(\mathrm{C}^{26}\right), 29.5 \mathrm{q}\left(\mathrm{C}^{27}\right), 30.4 \mathrm{t}\left(\mathrm{C}^{4}\right), 37.3 \mathrm{~d}\left(\mathrm{C}^{9}\right)$, $38.4 \mathrm{t}\left(\mathrm{C}^{1}\right), 39.8 \mathrm{~s}\left(\mathrm{C}^{10}\right), 41.2 \mathrm{t}\left(\mathrm{C}^{24}\right), 42.4 \mathrm{t}\left(\mathrm{C}^{12}\right), 44.2 \mathrm{t}$ $\left(\mathrm{C}^{7}\right), 46.7 \mathrm{~s}\left(\mathrm{C}^{13}\right), 47.3 \mathrm{~d}\left(\mathrm{C}^{8}\right), 51.2 \mathrm{~d}\left(\mathrm{C}^{5}\right), 59.3 \mathrm{~d}\left(\mathrm{C}^{17}\right)$, $70.3 \mathrm{~s}\left(\mathrm{C}^{25}\right), 66.7 \mathrm{~d}\left(\mathrm{C}^{3}\right), 69.5 \mathrm{~d}\left(\mathrm{C}^{2}\right), 81.6 \mathrm{~d}\left(\mathrm{C}^{22}\right)$, $83.4 \mathrm{~s}\left(\mathrm{C}^{20}\right), 106.8 \mathrm{~s}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right), 122.2 \mathrm{~d}\left(\mathrm{C}^{15}\right)$, $151.1 \mathrm{~s}\left(\mathrm{C}^{14}\right), 211.9 \mathrm{~s}\left(\mathrm{C}^{6}\right)$.
(20R,22R)-2 $\beta, 3 \beta, 20,22,25-P e n t a h y d r o x y-5 \beta, 8 \alpha-$ cholest-14-en-6-one (XIV, 7,8 α-dihydrostachysterone B). Compound V, $0.2 \mathrm{~g}(0.36 \mathrm{mmol})$, was dissolved in 3.6 ml of methanol, 1 ml of 10% perchloric acid was added, the mixture was stirred for 3.5 h and cooled to $5^{\circ} \mathrm{C}, 2 \mathrm{ml}$ of water and 1 ml of a saturated
solution of NaHCO_{3} were added, and the mixture was extracted with ethyl acetate $(3 \times 20 \mathrm{ml})$. The extracts were combined and evaporated under reduced pressure, and the residue was subjected to chromatography on 8 g of silica gel using chloroform-methanol (20:1) as eluent. Yield $0.07 \mathrm{~g}(33 \%), R_{\mathrm{f}} 0.38\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$, $5: 1), \mathrm{mp} 112-114^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{18}=-56.3^{\circ}(c=1.1, \mathrm{MeOH})$. IR spectrum: $v(\mathrm{C}=\mathrm{O}) 1700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}\right), \delta, \mathrm{ppm}: 1.17 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{18} \mathrm{H}_{3}\right), 1.19 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{C}^{19} \mathrm{H}_{3}\right), 1.20 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}\right), 1.26 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}_{3}\right), 1.42 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{C}^{27} \mathrm{H}_{3}\right), 1.50-2.40 \mathrm{~m}\left(17 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.48 \mathrm{~m}$ $\left(1 \mathrm{H}, 5-\mathrm{H}, w_{1 / 2}=11 \mathrm{~Hz}\right), 2.88 \mathrm{t}(1 \mathrm{H}, 7 \beta-\mathrm{H}, J=14 \mathrm{~Hz})$, $3.07 \mathrm{~m}\left(1 \mathrm{H}, 8-\mathrm{H}, w_{1 / 2}=25 \mathrm{~Hz}\right), 3.30 \mathrm{~m}(1 \mathrm{H}, 22-\mathrm{H})$, $3.74 \mathrm{~m}\left(1 \mathrm{H}, 2-\mathrm{H}, w_{1 / 2}=19 \mathrm{~Hz}\right), 3.92 \mathrm{~m}\left(1 \mathrm{H}, 3-\mathrm{H}, w_{1 / 2}=\right.$ $10 \mathrm{~Hz}), 5.39 \mathrm{br} . \mathrm{s}\left(1 \mathrm{H}, 15-\mathrm{H}, w_{1 / 2}=8 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}\right), \delta_{\mathrm{C}}, \mathrm{ppm}: 19.2 \mathrm{t}\left(\mathrm{C}^{11}\right), 20.1 \mathrm{q}\left(\mathrm{C}^{21}\right)$, $21.9 \mathrm{q}\left(\mathrm{C}^{18}\right), 25.3 \mathrm{t}\left(\mathrm{C}^{23}\right), 27.3 \mathrm{t}\left(\mathrm{C}^{16}\right), 27.5 \mathrm{q}\left(\mathrm{C}^{19}\right)$, $28.9 \mathrm{q}\left(\mathrm{C}^{26}\right), 29.4 \mathrm{q}\left(\mathrm{C}^{27}\right), 30.7 \mathrm{t}\left(\mathrm{C}^{4}\right), 38.9 \mathrm{~d}\left(\mathrm{C}^{9}\right)$, $40.3 \mathrm{t}\left(\mathrm{C}^{1}\right), 41.0 \mathrm{~s}\left(\mathrm{C}^{10}\right), 42.3 \mathrm{t}\left(\mathrm{C}^{12}, \mathrm{~S}^{24}\right), 44.5 \mathrm{t}\left(\mathrm{C}^{7}\right)$, $45.4 \mathrm{~d}\left(\mathrm{C}^{8}\right), 52.4 \mathrm{~d}\left(\mathrm{C}^{5}\right), 60.8 \mathrm{~d}\left(\mathrm{C}^{17}\right), 71.3 \mathrm{~s}\left(\mathrm{C}^{25}\right)$, $68.1 \mathrm{~d}\left(\mathrm{C}^{3}\right), 71.0 \mathrm{~d}\left(\mathrm{C}^{2}\right), 77.2 \mathrm{~s}\left(\mathrm{C}^{20}\right), 78.6 \mathrm{~d}\left(\mathrm{C}^{22}\right)$, $123.7 \mathrm{~d}\left(\mathrm{C}^{15}\right), 152.9 \mathrm{~s}\left(\mathrm{C}^{14}\right), 214.0 \mathrm{~s}\left(\mathrm{C}^{6}\right)$; the C^{13} signal was obscured by the solvent.
(20R,22R)-2 $\beta, 3 \beta$-Dihydroxy-20,22-isopropylidene-dioxy-5 $\beta, 8 \alpha$-cholest-14-en-6-one (XV). Hydrogen was passed through a suspension of $0.26 \mathrm{~g}(0.48 \mathrm{mmol})$ of compound VI and $0.1 \mathrm{~g}(10 \%)$ of Pd / C in 5 ml of ethanol under stirring at at $\sim 25^{\circ} \mathrm{C}$. After 3 days, the mixture was filtered, the catalyst was washed with ethanol, and the filtrate was evaporated under reduced pressure. The residue was subjected to chromatography on 6 g of silica gel using chloroform as eluent. Yield $0.094 \mathrm{~g}(41 \%), R_{\mathrm{f}} 0.39\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 20: 1\right)$, $\operatorname{mp} 110-112^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=-18.6^{\circ}\left(c=11.15, \mathrm{CHCl}_{3}\right)$. IR spectrum: $v(\mathrm{C}=\mathrm{O}) 1710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $0.87 \mathrm{~d}\left(6 \mathrm{H}, \mathrm{C}^{26} \mathrm{H}_{3}, \mathrm{C}^{27} \mathrm{H}_{3}, J=\right.$ $6.5 \mathrm{~Hz}), 1.14 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{21} \mathrm{H}_{3}\right), 1.17 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{C}^{18} \mathrm{H}_{3}\right), 1.27 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{C}^{19} \mathrm{H}_{3}\right), 1.40 \mathrm{~s}$ and $1.42 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}\right), 1.46-$ $2.22 \mathrm{~m}\left(16 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.15$ d.d $(1 \mathrm{H}, 7 \alpha-\mathrm{H}, J=14.5$, $3.4 \mathrm{~Hz}), 2.37 \mathrm{~m}\left(1 \mathrm{H}, 9-\mathrm{H}, w_{1 / 2}=11 \mathrm{~Hz}\right), 2.49 \mathrm{~d} . \mathrm{d}$ $(1 \mathrm{H}, 5-\mathrm{H}, J=11.7,14.8 \mathrm{~Hz}), 2.74 \mathrm{t}(1 \mathrm{H}, 7 \beta-\mathrm{H}, J=$ $14.5 \mathrm{~Hz}), 3.04$ d.t $(1 \mathrm{H}, 8-\mathrm{H}, J=13.8,5.1 \mathrm{~Hz}), 3.69$ d.d $(1 \mathrm{H}, 22-\mathrm{H}, J=8.6,2.5 \mathrm{~Hz}), 3.91 \mathrm{~m}\left(1 \mathrm{H}, 3-\mathrm{H}, w_{1 / 2}=\right.$ $24 \mathrm{~Hz}), 3.99 \mathrm{~m}\left(1 \mathrm{H}, 2-\mathrm{H}, w_{1 / 2}=11 \mathrm{~Hz}\right), 5.35 \mathrm{~m}(1 \mathrm{H}$, $\left.15-\mathrm{H}, w_{1 / 2}=6 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: $17.9 \mathrm{t}\left(\mathrm{C}^{11}\right), 21.0 \mathrm{q}\left(\mathrm{C}^{18}\right), 21.0 \mathrm{q}\left(\mathrm{C}^{21}\right), 22.4 \mathrm{q}$ $\left(\mathrm{C}^{26}\right), 22.4 \mathrm{q}\left(\mathrm{C}^{27}\right), 24.3 \mathrm{t}\left(\mathrm{C}^{23}\right), 26.7 \mathrm{q}\left(\mathrm{C}^{19}\right), 26.8 \mathrm{t}$ $\left(\mathrm{C}^{16}\right), 28.9 \mathrm{~s}\left(\mathrm{C}^{25}\right), 28.1 \mathrm{q}$ and $28.9 \mathrm{q}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right)$, $30.4 \mathrm{t}\left(\mathrm{C}^{4}\right), 36.2 \mathrm{t}\left(\mathrm{C}^{24}\right), 37.4 \mathrm{~d}\left(\mathrm{C}^{9}\right), 38.3 \mathrm{t}\left(\mathrm{C}^{1}\right), 39.8 \mathrm{~s}$ $\left(\mathrm{C}^{10}\right), 42.5 \mathrm{t}\left(\mathrm{C}^{12}\right), 44.2 \mathrm{t}\left(\mathrm{C}^{7}\right), 46.8 \mathrm{~s}\left(\mathrm{C}^{13}\right), 47.3 \mathrm{~d}\left(\mathrm{C}^{8}\right)$,
$51.2 \mathrm{~d}\left(\mathrm{C}^{5}\right), 59.5 \mathrm{~d}\left(\mathrm{C}^{17}\right), 69.6 \mathrm{~d}\left(\mathrm{C}^{3}\right), 70.7 \mathrm{~d}\left(\mathrm{C}^{2}\right)$, $81.3 \mathrm{~d}\left(\mathrm{C}^{22}\right), 83.2 \mathrm{~s}\left(\mathrm{C}^{20}\right), 106.6 \mathrm{~s}\left(20,22-\mathrm{Me}_{2} \mathrm{C}\right)$, $122.3 \mathrm{~d}\left(\mathrm{C}^{15}\right), 151.1 \mathrm{~s}\left(\mathrm{C}^{14}\right), 212.0 \mathrm{~s}\left(\mathrm{C}^{6}\right)$.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 04-03-33103) and by the President of the Russian Federation (program for state support of young Russian scientists, project no. MK-6975.2006.3).

REFERENCES

1. Afon'kina, S.R., Shafikov, R.V., Savchenko, R.G., Galyautdinov, I.V., and Odinokov, V.N., Russ. J. Org. Chem., 2006, vol. 42, p. 1234.
2. Akhrem, A.A. and Kovganko, N.V., Ekdisteroidy: khimiya i biologicheskaya aktivnost' (Ecdysteroids: Chemistry and Biological Activity), Minsk: Nauka i Tekhnika, 1989.
3. Werawattanametin, K., Podimnang, V., and Suksamrarn, A., J. Nat. Prod., 1986, vol. 49, p. 365.
4. Odinokov, V.N., Galyautdinov, I.V., Nedopekin, D.V., Ves'kina, N.A., and Khalilov, L.M., Russ. J. Org. Chem., 2003, vol. 39, p. 952.
5. Suksamrarn, A., Tanachatchairatana, T., and Sirigarn, C., Tetrahedron, 2002, vol. 58, p. 6033.
6. Caine, D., Organic Reactions, Dauben, W.G., Ed., New York: Wiley, 1976, vol. 23.
7. Dryden, H.L., Jr., Organic Reactions in Steroid Chemistry, Fried, J. and Edwards, J.A., New York: Van Nostrand Reinhold, 1972, vol. 1, p. 60.
8. Odinokov, V.N., Savchenko, R.G., Shafikov, R.V., Afon'kina, S.R., Khalilov, L.M., Kachala, V.V., and Shashkov, A.S., Russ. J. Org. Chem., 2005, vol. 41, p. 1296.
9. Greenwood, D.R., Dinan, L.N., and Rees, H.H., Biochem. J., 1984, vol. 217, p. 783.
10. Girault, J.-P., Blais, C., Beydon, P., Rolando, C., and Lafont, R., Arch. Insect Biochem. Physiol., 1989, vol. 10, p. 199.
11. Ionin, B.I., Ershov, B.A., and Kol'tsov, A.I., YaMRspektroskopiya v organicheskoi khimii (NMR Spectroscopy in Organic Chemistry), Leningrad: Khimiya, 1983.
12. Yingyongnarongkul, B. and Suksamrarn, A., Tetrahedron, 1998, vol. 54, p. 2795.
13. Lee, Sh.-Sh., Nakanishi, K., and Cherbas, P., J. Chem. Soc., Chem. Commun., 1991, p. 51.
14. Odinokov, V.N., Galyautdinov, I.V., Nedopekin, D.V., Khalilov, L.M., Shashkov, A.S., Kachala, V.V., Dinan, L., and Lafont, R., Insect Biochem. Molec. Biol., 2002, vol. 32, p. 161.
15. Odinokov, V.N., Galyautdinov, I.V., Nedopekin, D.V., and Khalilov, L.M., Izv. Ross. Akad. Nauk, Ser. Khim., 2003, p. 220.
16. Odinokov, V.N., Savchenko, R.G., Nazmeeva, S.R., Galyautdinov, I.V., and Khalilov, L.M., Russ. J. Org. Chem., 2002, vol. 38, p. 525.

[^0]: * For preliminary communication, see [1].

